Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Plant Microbe Interact ; 37(3): 239-249, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37921637

RESUMEN

Plant pathogens manipulate the cellular environment of the host to facilitate infection and colonization that often lead to plant diseases. To accomplish this, many specialized pathogens secrete virulence proteins called effectors into the host cell, which subvert processes such as immune signaling, gene transcription, and host metabolism. Phytophthora infestans, the causative agent of potato late blight, employs an expanded repertoire of RxLR effectors with WY domains to manipulate the host through direct interaction with protein targets. However, our understanding of the molecular mechanisms underlying the interactions between WY effectors and their host targets remains limited. In this study, we performed a structural and biophysical characterization of the P. infestans WY effector Pi04314 in complex with the potato Protein Phosphatase 1-c (PP1c). We elucidate how Pi04314 uses a WY domain and a specialized C-terminal loop carrying a KVxF motif that interact with conserved surfaces on PP1c, known to be used by host regulatory proteins for guiding function. Through biophysical and in planta analyses, we demonstrate that Pi04314 WY or KVxF mutants lose their ability to bind PP1c. The loss of PP1c binding correlates with changes in PP1c nucleolar localization and a decrease in lesion size in plant infection assays. This study provides insights into the manipulation of plant hosts by pathogens, revealing how effectors exploit key regulatory interfaces in host proteins to modify their function and facilitate disease. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Asunto(s)
Phytophthora infestans , Phytophthora infestans/genética , Monoéster Fosfórico Hidrolasas/metabolismo , Plantas/metabolismo , Factores de Transcripción/metabolismo , Unión Proteica , Enfermedades de las Plantas
2.
Plant Cell ; 35(10): 3809-3827, 2023 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-37486356

RESUMEN

Engineering the plant immune system offers genetic solutions to mitigate crop diseases caused by diverse agriculturally significant pathogens and pests. Modification of intracellular plant immune receptors of the nucleotide-binding leucine-rich repeat (NLR) receptor superfamily for expanded recognition of pathogen virulence proteins (effectors) is a promising approach for engineering disease resistance. However, engineering can cause NLR autoactivation, resulting in constitutive defense responses that are deleterious to the plant. This may be due to plant NLRs associating in highly complex signaling networks that coevolve together, and changes through breeding or genetic modification can generate incompatible combinations, resulting in autoimmune phenotypes. The sensor and helper NLRs of the rice (Oryza sativa) NLR pair Pik have coevolved, and mismatching between noncoevolved alleles triggers constitutive activation and cell death. This limits the extent to which protein modifications can be used to engineer pathogen recognition and enhance disease resistance mediated by these NLRs. Here, we dissected incompatibility determinants in the Pik pair in Nicotiana benthamiana and found that heavy metal-associated (HMA) domains integrated in Pik-1 not only evolved to bind pathogen effectors but also likely coevolved with other NLR domains to maintain immune homeostasis. This explains why changes in integrated domains can lead to autoactivation. We then used this knowledge to facilitate engineering of new effector recognition specificities, overcoming initial autoimmune penalties. We show that by mismatching alleles of the rice sensor and helper NLRs Pik-1 and Pik-2, we can enable the integration of synthetic domains with novel and enhanced recognition specificities. Taken together, our results reveal a strategy for engineering NLRs, which has the potential to allow an expanded set of integrations and therefore new disease resistance specificities in plants.


Asunto(s)
Resistencia a la Enfermedad , Proteínas de Plantas , Resistencia a la Enfermedad/genética , Proteínas de Plantas/metabolismo , Alelos , Plantas/genética , Inmunidad de la Planta/genética , Enfermedades de las Plantas/genética
3.
Curr Opin Plant Biol ; 74: 102380, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37187111

RESUMEN

Factors including climate change and increased global exchange are set to escalate the prevalence of plant diseases, posing an unprecedented threat to global food security and making it more challenging to meet the demands of an ever-growing population. As such, new methods of pathogen control are essential to help with the growing danger of crop losses to plant diseases. The intracellular immune system of plants utilizes nucleotide-binding leucine-rich repeat (NLR) receptors to recognize and activate defense responses to pathogen virulence proteins (effectors) delivered to the host. Engineering the recognition properties of plant NLRs toward pathogen effectors is a genetic solution to plant diseases with high specificity, and it is more sustainable than several current methods for pathogen control that frequently rely on agrochemicals. Here, we highlight the pioneering approaches toward enhancing effector recognition in plant NLRs and discuss the barriers and solutions in engineering the plant intracellular immune system.


Asunto(s)
Proteínas NLR , Plantas , Proteínas NLR/genética , Plantas/metabolismo , Inmunidad de la Planta/genética , Enfermedades de las Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
4.
Elife ; 122023 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-37199729

RESUMEN

A subset of plant intracellular NLR immune receptors detect effector proteins, secreted by phytopathogens to promote infection, through unconventional integrated domains which resemble the effector's host targets. Direct binding of effectors to these integrated domains activates plant defenses. The rice NLR receptor Pik-1 binds the Magnaporthe oryzae effector AVR-Pik through an integrated heavy metal-associated (HMA) domain. However, the stealthy alleles AVR-PikC and AVR-PikF avoid interaction with Pik-HMA and evade host defenses. Here, we exploited knowledge of the biochemical interactions between AVR-Pik and its host target, OsHIPP19, to engineer novel Pik-1 variants that respond to AVR-PikC/F. First, we exchanged the HMA domain of Pikp-1 for OsHIPP19-HMA, demonstrating that effector targets can be incorporated into NLR receptors to provide novel recognition profiles. Second, we used the structure of OsHIPP19-HMA to guide the mutagenesis of Pikp-HMA to expand its recognition profile. We demonstrate that the extended recognition profiles of engineered Pikp-1 variants correlate with effector binding in planta and in vitro, and with the gain of new contacts across the effector/HMA interface. Crucially, transgenic rice producing the engineered Pikp-1 variants was resistant to blast fungus isolates carrying AVR-PikC or AVR-PikF. These results demonstrate that effector target-guided engineering of NLR receptors can provide new-to-nature disease resistance in crops.


Asunto(s)
Magnaporthe , Oryza , Resistencia a la Enfermedad/genética , Receptores Inmunológicos/metabolismo , Plantas/metabolismo , Enfermedades de las Plantas/microbiología , Magnaporthe/metabolismo , Proteínas de Plantas/química , Interacciones Huésped-Patógeno
5.
Proc Natl Acad Sci U S A ; 119(43): e2210559119, 2022 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-36252011

RESUMEN

Exocytosis plays an important role in plant-microbe interactions, in both pathogenesis and symbiosis. Exo70 proteins are integral components of the exocyst, an octameric complex that mediates tethering of vesicles to membranes in eukaryotes. Although plant Exo70s are known to be targeted by pathogen effectors, the underpinning molecular mechanisms and the impact of this interaction on infection are poorly understood. Here, we show the molecular basis of the association between the effector AVR-Pii of the blast fungus Maganaporthe oryzae and rice Exo70 alleles OsExo70F2 and OsExo70F3, which is sensed by the immune receptor pair Pii via an integrated RIN4/NOI domain. The crystal structure of AVR-Pii in complex with OsExo70F2 reveals that the effector binds to a conserved hydrophobic pocket in Exo70, defining an effector/target binding interface. Structure-guided and random mutagenesis validates the importance of AVR-Pii residues at the Exo70 binding interface to sustain protein association and disease resistance in rice when challenged with fungal strains expressing effector mutants. Furthermore, the structure of AVR-Pii defines a zinc-finger effector fold (ZiF) distinct from the MAX (Magnaporthe Avrs and ToxB-like) fold previously described for a majority of characterized M. oryzae effectors. Our data suggest that blast fungus ZiF effectors bind a conserved Exo70 interface to manipulate plant exocytosis and that these effectors are also baited by plant immune receptors, pointing to new opportunities for engineering disease resistance.


Asunto(s)
Magnaporthe , Oryza , Resistencia a la Enfermedad , Proteínas Fúngicas/metabolismo , Interacciones Huésped-Patógeno , Magnaporthe/genética , Oryza/metabolismo , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/química , Plantas/metabolismo , Zinc/metabolismo
6.
Proc Natl Acad Sci U S A ; 118(50)2021 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-34880132

RESUMEN

Plants use intracellular nucleotide-binding domain (NBD) and leucine-rich repeat (LRR)-containing immune receptors (NLRs) to detect pathogen-derived effector proteins. The Arabidopsis NLR pair RRS1-R/RPS4 confers disease resistance to different bacterial pathogens by perceiving the structurally distinct effectors AvrRps4 from Pseudomonas syringae pv. pisi and PopP2 from Ralstonia solanacearum via an integrated WRKY domain in RRS1-R. How the WRKY domain of RRS1 (RRS1WRKY) perceives distinct classes of effector to initiate an immune response is unknown. Here, we report the crystal structure of the in planta processed C-terminal domain of AvrRps4 (AvrRps4C) in complex with RRS1WRKY Perception of AvrRps4C by RRS1WRKY is mediated by the ß2-ß3 segment of RRS1WRKY that binds an electronegative patch on the surface of AvrRps4C Structure-based mutations that disrupt AvrRps4C-RRS1WRKY interactions in vitro compromise RRS1/RPS4-dependent immune responses. We also show that AvrRps4C can associate with the WRKY domain of the related but distinct RRS1B/RPS4B NLR pair, and the DNA-binding domain of AtWRKY41, with similar binding affinities and how effector binding interferes with WRKY-W-box DNA interactions. This work demonstrates how integrated domains in plant NLRs can directly bind structurally distinct effectors to initiate immunity.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/microbiología , Proteínas Bacterianas/metabolismo , Proteínas de Plantas/metabolismo , Pseudomonas syringae/metabolismo , Arabidopsis/inmunología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas Bacterianas/genética , Muerte Celular , Clonación Molecular , ADN de Plantas , Regulación de la Expresión Génica de las Plantas/inmunología , Modelos Moleculares , Mutación , Proteínas de Plantas/genética , Conformación Proteica , Pseudomonas syringae/inmunología , Nicotiana
7.
PLoS Pathog ; 17(11): e1009957, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34758051

RESUMEN

Accelerated gene evolution is a hallmark of pathogen adaptation and specialization following host-jumps. However, the molecular processes associated with adaptive evolution between host-specific lineages of a multihost plant pathogen remain poorly understood. In the blast fungus Magnaporthe oryzae (Syn. Pyricularia oryzae), host specialization on different grass hosts is generally associated with dynamic patterns of gain and loss of virulence effector genes that tend to define the distinct genetic lineages of this pathogen. Here, we unravelled the biochemical and structural basis of adaptive evolution of APikL2, an exceptionally conserved paralog of the well-studied rice-lineage specific effector AVR-Pik. Whereas AVR-Pik and other members of the six-gene AVR-Pik family show specific patterns of presence/absence polymorphisms between grass-specific lineages of M. oryzae, APikL2 stands out by being ubiquitously present in all blast fungus lineages from 13 different host species. Using biochemical, biophysical and structural biology methods, we show that a single aspartate to asparagine polymorphism expands the binding spectrum of APikL2 to host proteins of the heavy-metal associated (HMA) domain family. This mutation maps to one of the APikL2-HMA binding interfaces and contributes to an altered hydrogen-bonding network. By combining phylogenetic ancestral reconstruction with an analysis of the structural consequences of allelic diversification, we revealed a common mechanism of effector specialization in the AVR-Pik/APikL2 family that involves two major HMA-binding interfaces. Together, our findings provide a detailed molecular evolution and structural biology framework for diversification and adaptation of a fungal pathogen effector family following host-jumps.


Asunto(s)
Evolución Molecular , Interacciones Huésped-Patógeno , Magnaporthe/fisiología , Oryza/microbiología , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/metabolismo , Polimorfismo Genético , Sustitución de Aminoácidos , Oryza/metabolismo , Filogenia , Proteínas de Plantas/genética , Virulencia
8.
J Biol Chem ; 295(44): 14916-14935, 2020 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-32816993

RESUMEN

Plant diseases caused by pathogens and pests are a constant threat to global food security. Direct crop losses and the measures used to control disease (e.g. application of pesticides) have significant agricultural, economic, and societal impacts. Therefore, it is essential that we understand the molecular mechanisms of the plant immune system, a system that allows plants to resist attack from a wide variety of organisms ranging from viruses to insects. Here, we provide a roadmap to plant immunity, with a focus on cell-surface and intracellular immune receptors. We describe how these receptors perceive signatures of pathogens and pests and initiate immune pathways. We merge existing concepts with new insights gained from recent breakthroughs on the structure and function of plant immune receptors, which have generated a shift in our understanding of cell-surface and intracellular immunity and the interplay between the two. Finally, we use our current understanding of plant immunity as context to discuss the potential of engineering the plant immune system with the aim of bolstering plant defenses against disease.


Asunto(s)
Plantas/inmunología , Receptores Inmunológicos/metabolismo , Proteínas NLR/metabolismo , Enfermedades de las Plantas/inmunología , Plantas/metabolismo , Transducción de Señal
9.
Curr Opin Plant Biol ; 56: 99-108, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32554226

RESUMEN

Many plant NLR (nucleotide-binding, leucine-rich repeat) immune receptors require other NLRs for their function. In pairs of chromosomally adjacent sensor/helper NLRs, the sensor typically carries an integrated domain (ID) that mimics the authentic target of a pathogen effector. The RPW8-NLR clade supports the function of many diverse plant NLRs, particularly those with a TIR N-terminal domain, in concert with a family of EP-domain containing signalling partners. The NRC clade of NLRs are required for the function of many unlinked sensor NLRs in Solanaceous plants. We evaluate recent advances in paired NLR biology in the context of the structure and possible mechanisms of the first defined plant inflammasome containing ZAR1.


Asunto(s)
Proteínas NLR , Inmunidad de la Planta , Proteínas NLR/genética , Inmunidad de la Planta/genética , Plantas , Dominios Proteicos , Transducción de Señal
10.
Cell Host Microbe ; 26(2): 193-201, 2019 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-31415752

RESUMEN

Plant innate immunity is triggered via direct or indirect recognition of pathogen effectors by the NLR family immune receptors. Mechanistic understanding of plant NLR function has relied on structural information from individual NLR domains and inferences from studies on animal NLRs. Recent reports of the cryo-EM structures of the Arabidopsis plant immune receptor ZAR1 in monomeric inactive and transition states, as well as the active oligomeric state or the "resistosome," have afforded a quantum leap in our understanding of how plant NLRs function. In this Review, we outline the recent structural findings and examine their implications for the activation of plant immune receptors more broadly. We also discuss how NLR signaling in plants, as illustrated by the ZAR1 structure, is analogous to innate immune receptor signaling mechanisms across kingdoms, drawing particular attention to the concept of signaling by cooperative assembly formation.


Asunto(s)
Proteínas de Arabidopsis , Proteínas Portadoras , Inmunidad de la Planta/inmunología , Receptores Inmunológicos , Transducción de Señal , Adenosina Difosfato , Adenosina Trifosfato/metabolismo , Arabidopsis/inmunología , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/inmunología , Proteínas de Arabidopsis/metabolismo , Proteínas Portadoras/química , Proteínas Portadoras/inmunología , Proteínas Portadoras/metabolismo , Inmunidad Innata , Proteínas NLR/química , Proteínas NLR/metabolismo , Inmunidad de la Planta/fisiología , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Dominios Proteicos , Receptores Inmunológicos/química , Receptores Inmunológicos/inmunología , Receptores Inmunológicos/metabolismo
11.
Plant Cell Physiol ; 59(12): 2398-2408, 2018 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-30192967

RESUMEN

Plant nucleotide-binding leucine-rich repeat receptors (NLRs) are intracellular pathogen receptors whose N-terminal domains are integral to signal transduction after perception of a pathogen-derived effector protein. The two major plant NLR classes are defined by the presence of either a Toll/interleukin-1 receptor (TIR) or a coiled-coil (CC) domain at their N-terminus (TNLs and CNLs). Our knowledge of how CC domains function in plant CNLs lags behind that of how TIR domains function in plant TNLs. CNLs are the most abundant class of NLRs in monocotyledonous plants, and further research is required to understand the molecular mechanisms of how these domains contribute to disease resistance in cereal crops. Previous studies of CC domains have revealed functional diversity, making categorization difficult, which in turn makes experimental design for assaying function challenging. In this review, we summarize the current understanding of CC domain function in plant CNLs, highlighting the differences in modes of action and structure. To aid experimental design in exploring CC domain function, we present a 'best-practice' guide to designing constructs through use of sequence and secondary structure comparisons and discuss the relevant assays for investigating CC domain function. Finally, we discuss whether using homology modeling is useful to describe putative CC domain function in CNLs through parallels with the functions of previously characterized helical adaptor proteins.


Asunto(s)
Proteínas NLR/química , Proteínas NLR/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Dominios Proteicos , Estructura Secundaria de Proteína , Relación Estructura-Actividad
12.
Proc Natl Acad Sci U S A ; 114(10): E2046-E2052, 2017 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-28159890

RESUMEN

The self-association of Toll/interleukin-1 receptor/resistance protein (TIR) domains has been implicated in signaling in plant and animal immunity receptors. Structure-based studies identified different TIR-domain dimerization interfaces required for signaling of the plant nucleotide-binding oligomerization domain-like receptors (NLRs) L6 from flax and disease resistance protein RPS4 from Arabidopsis Here we show that the crystal structure of the TIR domain from the Arabidopsis NLR suppressor of npr1-1, constitutive 1 (SNC1) contains both an L6-like interface involving helices αD and αE (DE interface) and an RPS4-like interface involving helices αA and αE (AE interface). Mutations in either the AE- or DE-interface region disrupt cell-death signaling activity of SNC1, L6, and RPS4 TIR domains and full-length L6 and RPS4. Self-association of L6 and RPS4 TIR domains is affected by mutations in either region, whereas only AE-interface mutations affect SNC1 TIR-domain self-association. We further show two similar interfaces in the crystal structure of the TIR domain from the Arabidopsis NLR recognition of Peronospora parasitica 1 (RPP1). These data demonstrate that both the AE and DE self-association interfaces are simultaneously required for self-association and cell-death signaling in diverse plant NLRs.


Asunto(s)
Proteínas de Arabidopsis/química , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Enfermedades de las Plantas/genética , Proteínas de Plantas/química , Secuencia de Aminoácidos , Arabidopsis/inmunología , Arabidopsis/microbiología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/inmunología , Sitios de Unión , Muerte Celular/genética , Muerte Celular/inmunología , Lino/genética , Lino/inmunología , Lino/microbiología , Interacciones Huésped-Patógeno , Modelos Moleculares , Mutación , Peronospora/patogenicidad , Peronospora/fisiología , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Inmunidad de la Planta/genética , Proteínas de Plantas/genética , Proteínas de Plantas/inmunología , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Estructura Secundaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Transducción de Señal , Nicotiana/genética , Nicotiana/inmunología , Nicotiana/microbiología
13.
Proc Natl Acad Sci U S A ; 113(45): 12856-12861, 2016 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-27791121

RESUMEN

Plants use intracellular immunity receptors, known as nucleotide-binding oligomerization domain-like receptors (NLRs), to recognize specific pathogen effector proteins and induce immune responses. These proteins provide resistance to many of the world's most destructive plant pathogens, yet we have a limited understanding of the molecular mechanisms that lead to defense signaling. We examined the wheat NLR protein, Sr33, which is responsible for strain-specific resistance to the wheat stem rust pathogen, Puccinia graminis f. sp. tritici We present the solution structure of a coiled-coil (CC) fragment from Sr33, which adopts a four-helix bundle conformation. Unexpectedly, this structure differs from the published dimeric crystal structure of the equivalent region from the orthologous barley powdery mildew resistance protein, MLA10, but is similar to the structure of the distantly related potato NLR protein, Rx. We demonstrate that these regions are, in fact, largely monomeric and adopt similar folds in solution in all three proteins, suggesting that the CC domains from plant NLRs adopt a conserved fold. However, larger C-terminal fragments of Sr33 and MLA10 can self-associate both in vitro and in planta, and this self-association correlates with their cell death signaling activity. The minimal region of the CC domain required for both cell death signaling and self-association extends to amino acid 142, thus including 22 residues absent from previous biochemical and structural protein studies. These data suggest that self-association of the minimal CC domain is necessary for signaling but is likely to involve a different structural basis than previously suggested by the MLA10 crystallographic dimer.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...